
A Machine Learning Assisted Tool and
Numerical Model for Analyzing Lipid
Nanoparticles
Owen Yuk Long Ip, Harrison D. E. Fan, Yao Zhang, Jerry Leung, Colton Strong, Janell Ko,
Pieter R. Cullis, and Miffy Hok Yan Cheng*

Cite This: ACS Nano 2025, 19, 33387−33398 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The transfection potency and biological fate of
gene-loaded lipid nanoparticles (LNPs) are often determined by
their morphological and physicochemical properties. Cryogen-
ic-electron microscopy (cryo-EM) remains the most effective
tool to analyze LNP morphology and internal structures in their
native state, but analysis of cryo-EM micrographs is time-
consuming and inefficient due to the diversity in size, shape,
and structure of LNPs. In this study, we developed the Lipid
Nanoparticle Morphology and Object Detector (LNP-MOD)
pipeline. We adopted a modular design by using the You Only
Look Once (YOLO) model for object detection and the
Segmentation Anything model 2 (SAM 2) for LNP compart-
mental segmentation. We trained the model and demonstrated
that LNP-MOD can effectively identify and segment different classes of LNPs and their corresponding internal structures with
∼80% accuracy. We further compared the image analysis data with mathematical modeling of LNPs containing water and
mRNA (Liposomal LNPs and Bleb LNPs) according to the phase preferences of the lipids, and showed correspondence
between LNP-MOD output, modeling results, and experimental data. Our approach of combining single-particle cryo-EM
imaging with LNP-MOD is complementary to other analytical techniques. It allows for rapid identification and segmentation
of a variety of LNP-nucleic acid morphologies and presents a powerful tool to inform the design of next-generation LNPs.
KEYWORDS: lipid nanoparticles, mRNA, LNP morphologies, numerical model, cryo EM, machine learning, computer vision

INTRODUCTION
Lipid nanoparticles (LNPs) have become a promising delivery
system for nucleic acid therapeutics as demonstrated by two
clinically approved nanomedicines, namely Onpattro for the
treatment of transthyretin induced amyloidosis and the
COVID-19 LNP mRNA vaccines.1,2 While FDA guidelines
require characterization of LNP particle size distribution,
charge, and mRNA encapsulation,3,4 many other properties
such as loading efficiency, morphology, and empty LNP
populations are often not characterized. However, these
properties can significantly impact the biological activity and
therapeutic outcome.5 Most recently, our research group and
others have shown that the delivery and transfection potency
of gene-loaded LNPs is dependent on their morphological and
related structural properties.6−9 To study LNP structure and
morphology, transmission cryogenic-electron microscopy
(cryo-EM) has become the most popular tool to analyze
their most native state since the vitrification process prevents

artifacts that would be induced by chemical staining and
dehydration. This analytical method also enables measurement
of size, shape, internal structure, and lamellarity of the LNPs.
Moreover, cryo-EM provides high-resolution, single particle
structure analysis, and allows visualization of the inner
structure of encapsulated drugs, nucleic acid cargo, and even
membrane proteins.9−11 Cryo-EM structural analysis of
LNPs12 can benefit the formulation development of LNPs in
the pharmaceutical industry by enabling the design of
homogeneous next-generation LNP-based vaccines and
therapeutics.
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However, high-throughput cryo-EM morphological analysis
has typically been limited by the diversity in shape, size, phase,
and orientation of LNPs. The low signal-to-noise ratio (SNR)
and low contrast in LNP cryo-EM images also limits the use of
masking and thresholding image analysis techniques for
confident classification. These conditions make the process
of particle annotation and measurement time-consuming and
labor intensive. Despite different semi- or fully automated
approaches13−15 that have been proposed to leverage recent
advancements using machine learning for cryo-EM particle
picking, those techniques have been optimized for protein
particle picking of a single purified protein, rather than a self-
assembled LNP system with lower uniformity. Thus, there is
an increasing need to develop new image analysis tools that
can enable rapid and high-throughput analysis of LNP cryo-
EM images.
In this study, we have established an AI model pipeline

called Lipid Nanoparticle Morphology and Object Detector
(LNP-MOD) with a modular design that consist of 3 parts:
Object Detection, Segmentation, and Post-Processing. The
Object Detection module was first used to locate the LNPs and
their internal structures from cryo-EM images. Since the size,
shape, and internal features of an LNP can vary drastically
between different formulations, an object detection model with
a strong baseline performance was trained to locate target
instances while only needing a small data set. We explored the
You Only Look Once (YOLO) model for its strong foundation
model performance, variety of model sizes, and lower
computation demand to train and deploy. We fine-tuned and
evaluated different versions and sizes of the YOLO models
with our custom data set and implemented a refined
YOLOv12-s (YOLO version 12�size s) model for LNP-

MOD to strike a balance between performance and computa-
tional complexity.
For the Instance Segmentation Module, we then utilized the

Segment Anything model 2 (SAM 2) that demonstrated
promising results in segmenting specific objects for both
medical and cryo-EM imaging.16−21 Leveraging SAM 2’s
promptable framework, outputs from the Object Detection
Module served as prompts for specific targets of interest to
generate precise outline masks at the pixel level. Our fine-tuned
SAM 2 showed significant improvements in segmenting LNP
internal structures and showed strong zero-shot generalization
for unseen LNPs, allowing LNP-MOD to study new LNP
morphologies by building only a small data set to fine-tune the
Object Detection Module.
The Post-Processing Module then combined the outputs

from the previous two modules and generated a summary
package to provide an overview of the LNPs in terms of their
size, distribution, and segmented internal features. Lastly, we
demonstrated that the particle features characterized from
LNP-MOD agreed well with numerical modeling of two
different classes of LNP morphologies (Liposomal LNPs and
Bleb LNPs), which revealed some important biophysical
behaviors of these LNP systems.

RESULTS AND DISCUSSION
A Modular Approach to Building a Lipid Nano-

particle Analysis Pipeline. LNPs can adopt various
morphologies and with multiple compartments due to phase
separation and cargo encapsulation.22−25 In order to train and
evaluate LNP-MOD, a data set was curated from 228 cryo-EM
images containing LNPs from the Nanomedicines Research
Group at the University of British Columbia. The classification

Figure 1. LNP-MOD training parameters. (A) Classes of lipid nanoparticle morphology and internal structure with example cryo-EM images
and illustrations. Classes include Liposome, Oil Core, Blebs with mRNA, and Liposomal LNP. (B) Examples of different internal structures
in highlighted regions: mRNA (pink) and oil droplet (brown).
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of LNPs and internal structures from cryo-EM images was
based on previous work on LNP formulation develop-
ment.9,26−29 LNPs from the training data set fell under 4
major identifiable classes: Liposome, Oil Core, Blebs with
mRNA, and Liposomal LNP (Figure 1A), and 2 classes for
internal structures: mRNA and oil droplet (Figure 1B). LNPs
that did not belong to the 4 major identifiable classes were
classified as Other LNP. Any LNPs not fully visible in the
image were classified as Not Fully Visible LNP. The
annotations were then reviewed by three scientists to
independently correct annotations and to minimize bias. The
data set was then split in an 80:20 ratio for model training and
validation, respectively (refer to Methods).
The pipeline of LNP-MOD consisted of 3 modules: Object

Detection, Instance Segmentation, and Post-Processing
(Figure 2). For Object Detection, the model You Only Look
Once version 12 (YOLOv12)30 architecture was utilized to
classify different LNP structural morphologies (object classes)
and their corresponding internal compartments. It also
identified and located LNPs (pixel coordinates) and
confidence of detection from cryo-EM images with better
accuracy using fewer parameters, as compared to previous
YOLO models.
As shown in Figure S1, the architecture of YOLOv12

consists of 3 main modules: Backbone, Neck, and Head. The
Backbone is a feature extractor that produces feature maps at
different resolutions, while the neck combines these features,
and the head outputs final detections (bounding boxes and
class predictions). This enables the network to capture broader
contextual information, thus improving its ability to identify
LNPs and internal structures of various sizes and shapes.
Subsequently, the coordinates of the generated bounding

boxes, along with the input cryo-EM images, were forwarded
from the Object Detection Module to the Instance
Segmentation Module. A key criterion of the segmentation
model is the ability to handle unfamiliar objects, as LNP
morphologies and internal structures can vary from different

formulation processes and lipid compositions, and can readily
adopt a different compartment at various locations within the
LNP. For this step, Segmentation Anything model 2 (SAM
2)20 was employed as it is a state-of-the-art promptable
segmentation model that takes points, bounding boxes, or
masks as inputs to specify segmentation targets, and
demonstrates strong zero shot capability with unseen objects
and images.16,19,21,31

The architecture of SAM 2 consists of 3 major components
for image segmentation: Image Encoder, Prompt Encoder, and
Mask Decoder (Figure S2). The Image Encoder extracts high
level feature embeddings from the input image. The Prompt
Encoder converts given prompts into embeddings that guides
the segmentation process. Finally, the Mask Decoder combines
both the image and prompt embeds to produce the final
segmentation masks. By utilizing the bounding boxes out-
putted from the Object Detection Module as a prompt, this
allows SAM 2 to segment the target LNPs or internal
structures. This is especially important in the scenario when
segmenting different internal structures of LNPs, or even
overlapping LNPs, to provide a better segmentation result.
Finally, outputs from the Object Detection and Instance

Segmentation Modules were then processed through the Post-
Processing Module, producing data sheets and visualizations to
provide an overview of the processed cryo-EM images,
enabling further quantitative analysis. Bounding boxes and
class labels identified by the Object Detection Module were
integrated with segmentation masks from the Instance
Segmentation Module to characterize each identified LNP
and its internal structures. The segmentation masks were then
converted into polygons to enable geometric measurement
including calculation of the longest diameter and cross-
sectional area in pixel units. These pixel-based measurements
were then converted into nanometers through using the
number of pixels of the cryo-EM scale bar as a reference. Based
on the pixel coordinates of each LNP and its internal
structures, the structures of each LNP object were identified

Figure 2. Pipeline design of LNP-MOD. (A) A cryo-EM image is uploaded to LNP-MOD and forwarded to the Object Detection Module.
(B) The Object Detection Module processes the input image and generates inference results consisting of object classes and pixel
coordinates of bounding boxes (B.1), and confidence of detection of all detected LNPs and internal structures in the image. (C) Input cryo-
EM images from A are fed into the Image Encoder of SAM architecture, while the bounding boxes output from previous module (B.1) are
fed into the Prompt Encoder. The Mask Decoder then processes the output from both the Prompt Encoder and Image Encoder to generate a
segmentation mask (C.1) for each detected object from Object Detection. (D) The outputs from the Object Detection Module and Instance
Segmentation Module are further processed to generate a summary package that provides an overview of the detected LNPs, such as their
diameter, area, type, and distribution.
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and characterized. The measurement metrics (diameter, cross-
sectional area, and volume) and data visualizations (LNP size
distribution, class population, and segmented properties) were
compiled to provide a comprehensive data package (Figure
S3).
For both ease of use and modularity, LNP-MOD was

developed as a Python package and embedded in a Jupyter
Notebook with a graphical user interface (GUI) suitable for
both experienced programming personnel and scientists.

LNP-MOD Performance. The performance of LNP-MOD
was evaluated using a validation data set comprised of cryo-EM
images that the models had not seen during training. The
validation data set contained 48 cryo-EM images with ∼2400
various LNPs and internal structures. To evaluate the
performance between different generations of YOLO archi-
tecture models (YOLOv8-s, YOLOv9-s, YOLOv10-s,
YOLOv11-s and YOLOv12-s), each model was trained with
the same training data set and compared for the Object
Detection Module. The YOLOv12-s model achieved the best

Figure 3. LNP-MOD evaluation on validation data set. (A) normalized confusion matrix of LNP-MOD object detection model with
YOLOv12-s architecture on validation data set. The model achieved an average identification accuracy of 74% for LNPs and 82% for internal
structures. Notably, the matrix indicates a clear differentiation between the two groups of classes, with no misclassifications between them.
(B) Overall Dice Similarity Coefficient (DSC) Score comparison across different segmentation models. The box plot compares the overall
performance between foundation and fine-tuned models, demonstrating consistently high segmentation accuracy with mean DSC scores
above 0.9. (C) Per-class DSC score comparison. This plot provides a detailed breakdown of the DSC scores for each specific LNP and
internal structure class, comparing the performance of the four models from Figure 3B. (D) Visual examples of segmentation performance
on validation data set. The panel displays a comparison between the ground truth annotation and the segmentation mask generated by the
foundation models and fine-tuned models. The left column images show segmentation of Liposomal LNP (purple region) containing an oil
droplet internal structure (orange region). The right column images show segmentation of a Blebs with mRNA LNP (yellow region)
containing an internal mRNA structure (pink region).
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performance with a Mean Average Precision averaged (mAP)
of 0.796 under an intersection over union (IoU) threshold
from 50% to 95%. (summarized in Table S2 and Figure S4).
YOLOv12 integrates attention mechanisms from vision
transformers, and its Area Attention Module enlarges the
receptive field compared to earlier models. Therefore, the
YOLOv12-s model was employed as the object detection
model to maintain a balance between performance and
computation efficiency (Table S1).
As shown in Figure 3A, the classification performance of the

LNP-MOD with the normalized confusion matrix was further
studied. The model correctly identified LNP morphologies
with an average accuracy of 78% and internal structures with
83% accuracy. The significantly lower performance for Other
LNP was likely due to the lack of samples from the training
data set. Additionally, the reduced accuracy in identifying
Liposomal LNP and Liposome likely stemmed from the
inherent difficulty in distinguishing these classes, as shown in
Figure S5. Overall, the matrix shows a clear separation between
the LNP morphologies and internal structures, with no
misclassifications between the two groups of classes,
demonstrating the model’s robust discriminative capability.
The segmentation performance of LNP-MOD was evaluated

with the validation data set and compared against the SAM 1
and SAM 2.1 foundation models. As shown in Figure 3B,C,

LNP-MOD outperformed both foundation models, achieving a
higher overall and per-class Dice Similarity Coefficient (DSC).
The mean DSC increased from 0.8958 (SAM 1) and 0.9029
(SAM 2) to 0.9462 (LNP-MOD), while the standard deviation
decreased from 0.0749 to 0.0498, indicating improved
accuracy and consistency. Figure 3D shows two qualitative
segmentation examples from the validation task that further
demonstrated the stronger performance of LNP-MOD on
segmenting weak boundaries of LNP and their internal
structures. While both foundation models were able to locate
LNPs in cryo-EM images, they failed to accurately segment the
LNPs and their internal structures. This is likely due to the low
contrast and fuzzy background of cryo-EM images, as well as
the absence of cryo-EM data images in the training data of the
foundation models.20,32 Overall, fine-tuning SAM 2.1 on cryo-
EM images allowed LNP-MOD to yield significantly more
accurate and robust segmentations.
Lastly, the Post-Processing Module was evaluated by

comparing the generated summary packages with manually
measured data for both the Liposomal LNP and Blebs with
mRNA systems. Each package included information on particle
diameter, cross-sectional area, and total count, and was broadly
consistent with the data measured manually (Figures S6 and
S7).

Figure 4. Liposomal LNP cryo-EM analysis and numerical modeling. (A) Cryo-EM images of LNP-mRNA systems containing
NanoLuciferase-encoded mRNA (808 nt; N/P = 6) with lipid compositions nor-MC3/ESM:cholesterol/PEG-DMG at ratios of cationic lipid
from 0% to 70%. Scale bar = 100 nm. (B) Cross-section of numerical model at ratios of cationic lipid from 0% to 70% and no PEG-lipid,
showing outline of membrane lipid heads (red dashed), oil droplet (black), and 4 copies NanoLuc mRNA + water (blue). Axes units in nm.
(C) Average diameter of LNP systems determined by LNP-MOD image analysis by area converted (red x’s) and longest line (green ■’s)
methods compared with numerical model (blue ●’s). (D) Average cross-sectional area of LNP systems determined by LNP-MOD (red x’s)
compared with numerical model (blue ●’s).
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Mathematical Modeling of Phase Separated LNPs
that Contain Water, mRNA, and Ionizable Lipids. To
further evaluate LNP-MOD on LNPs with distinct morphol-
ogies and membrane biophysical features, cryo-EM images of
two different classes of LNPs analyzed by LNP-MOD were
compared against mathematical models of theoretical LNPs.
The first class of LNP analyzed was the Liposomal LNP
system, which comprised of a bilayer membrane of equimolar
ratios of egg sphingomyelin (ESM) to cholesterol, surrounding
an oil droplet comprised of the ionizable cationic lipid nor-
MC3. As shown in Figure 4A, cryo-EM images demonstrated a
transition from a bilayer system to a monolayer system with
increasing ratios of the ionizable lipid from 10−70%. We have
recently reported that Liposomal LNP formation is determined
by the nucleation of the ionizable lipid with mRNA cargo at
pH 4, followed by self-assembly of the bilayer (comprised of
helper lipid, cholesterol, and the positively charged form of the
ionizable lipid), followed by phase separation of the ionizable
lipid from the bilayer into an oil core as the pH is raised to pH
7.4. The RNA cargo is partitioned into a polar environment
surrounded by a monolayer or bilayer of the helper lipid and
cholesterol.29

To study the size and morphological transition between a
bilayer liposomal membrane system to an amorphous oil core
structure, the ionizable cationic lipid content of a theoretical
Liposomal LNP was modeled across the same range of nor-
MC3 molar ratios. Polyethylene glycol (PEG)-lipids were
excluded from theoretical calculations. Surrounding the
internal oil droplet of neutral nor-MC3 ionizable lipids was a
set of concentric spherical shells, corresponding to monolayer
of ESM and cholesterol, encapsulated water, mRNA encoding

NanoLuciferase (NanoLuc; 808 nucleotides), and finally an
outer bilayer of ESM and cholesterol. A cross-sectional
schematic of this structure is provided in Figure S8.
The following parameters were used to model the

membrane properties of the equimolar ratio of ESM to
cholesterol33 in the monolayer and bilayer structures at pH 7.4:
monolayer thickness of 2.5 nm, bilayer thickness34 of 5 nm,
and headgroup areas of 0.5 nm2 and 0.37 nm2 per ESM and
cholesterol molecule.34 Additional constraints in the model
included adsorption of 10 water molecules per lipid headgroup
onto the inner bilayer leaflet, based on molecular dynamics
simulations of phosphatidylcholine (PC) lipid hydration
shells.35 A similar hydration level was assumed for the
monolayer surrounding the oil droplet. The aqueous compart-
ment also contained 4 copies of NanoLuc mRNA, based on an
average mRNA loading from theoretical calculation based on
wt/wt ratio of lipids and mRNA, respectively (Table 1).
The bulk volume of encapsulated water followed an

empirically derived, inverse decaying sigmoidal function
(refer to Methods), reflecting that water loss was attributed
to effects such as spontaneous curvature and possibly increased
membrane hydrophobicity from partial incorporation of
ionizable lipid into the membrane. The model initially
constrained the LNP diameter to 90 nm in the absence of
nor-MC3 (0%), where size was governed by favorable bilayer
curvature. As nor-MC3 content increased, ESM helper lipid
and cholesterol amounts decreased. The incorporation of
ionizable lipid was predicted to occupy the internal volume,
resulting in predominantly an oil-saturated structure (Figure
4B).

Table 1. Mathematical Formulations (eqs 4.1−4.16) Employed to Model Liposomal LNPs with Varying Ionizable Lipid
Compositions
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Experimentally, the diameter of NanoLuc-encapsulated
Liposomal LNP systems was analyzed by LNP-MOD using
two image-based sizing methods (Figure 4C). The first method
(area converted, red x’s) summed the pixels in the segmented
cross-section, converted the area from units of pixels2 to nm2

using the cryo-EM scale bar as a reference, then computed the
diameter using A = πd2/4. The second method (longest line,
green ■’s) measured the maximum end-to-end distance across
the segmented region. Both approaches revealed similar
diameter trends with increasing nor-MC3 content and were
in good agreement with the numerical model (blue ●’s).
Segmented cross-sectional areas (Figure 4D) also showed
consistently similar agreement between LNP-MOD sizing
measurements (red x’s) and the numerical model (blue ●’s).
Interestingly, when larger Firefly Luciferase mRNA (FLuc;

1921 nucleotides) was encapsulated under the same lipid
composition, a distinct size and morphological trend emerged.
Cryo-EM analysis revealed that FLuc-encapsulated Liposomal
LNPs exhibited larger sizes than NanoLuc-encapsulated
Liposomal LNPs (Figure S9), with a corresponding larger oil

droplet (∼20 to 40%) population compared to the LNP-
NanoLuc mRNA system, suggesting that when the charge
density ratio is constant, the ionizable lipid content
corresponding to the oil core would increase to accommodate
for larger mRNA.
The second class of LNPs analyzed was the Blebs with

mRNA system (50/10/40%; KC2/DSPC/cholesterol), which
consisted of an ionizable cationic lipid (KC2) oil droplet
encapsulated by a monolayer of distearoylphosphatidylcholine
(DSPC) and cholesterol. A phase-separated aqueous blebbed
compartment containing Firefly Luciferase encoded mRNA
(FLuc; 1921 nucleotides) was located adjacent to the oil core
and was surrounded by a bilayer formed from DSPC and
cholesterol. Between the mRNA and the enclosing bilayer was
a shell-like region of water (Figure S10).
The numerical model was developed to predict the expected

size of a Bleb LNP containing an assumed 4 copies of FLuc
mRNA. As with the previous system, PEG-lipids were not
included in the theoretical calculations. Consistent with earlier
assumptions, the model assumed that 10 water molecules were

Table 2. Mathematical Formulations (eqs 5.1−5.20) Employed to Model Bleb LNP Containing a Water and mRNA
Compartment Protruded from KC2-Based Oil Droplet

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.5c09956
ACS Nano 2025, 19, 33387−33398

33393

https://pubs.acs.org/doi/suppl/10.1021/acsnano.5c09956/suppl_file/nn5c09956_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.5c09956/suppl_file/nn5c09956_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c09956?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c09956?fig=tbl2&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.5c09956?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


adsorbed onto each lipid head of the inner bilayer leaflet
(Figure S10). The geometry was modeled as two overlapping
spheres representing the oil and aqueous compartments. The
model was defined by a separate system of equations (refer to
Methods, Table 2) and solved for the overall cross-sectional
area and volume, using the cross-sectional area fraction
occupied by mRNA and water as an independent variable.
This cross-sectional area fraction was varied from 5% to 75%.
As shown in Figure 5A, the end-to-end diameter of

experimentally formulated FLuc-encapsulated Bleb LNP
system was analyzed by LNP-MOD using the longest line
method (green ■’s) over a large data set. Numerical model
predictions (blue ●’s) generally followed the experimental
trend and were in good agreement at the lower end of the size
distribution. Figure 5B shows a 3D illustration of the predicted
particle geometry at a mRNA + water cross-sectional area
fraction of 25%. Although the model was solvable across the
full range from 5%−75% (Figure S11 for cross-section views),
two notable exceptions were observed.
First, at low fractions (5−15%), the solved value of internal

water volume Vw (eq 5.7 in Methods) was negative, indicating
that it may not be physically feasible to encapsulate 4 full
copies of FLuc mRNA at such low internal area fractions.
Second, at high fractions (65−75%), the solved outer surface
area of the LNP SALNP (eq 5.19 in Methods) was negative.
While not physically possible, this suggests that there were
would not be enough DSPC and cholesterol lipids in the
physical system to form the monolayer and bilayer membranes.
This observation was reflected in the experimentally
formulated particles, where Bleb LNPs did not exhibit a
cross-sectional area fraction of mRNA and water greater than
60% cross-sectional area fraction.

CONCLUSION
This study introduced LNP-MOD, an AI model pipeline
designed for high-throughput analysis of LNP cryo-EM images.
LNP-MOD contains an Object Detection Module that
leveraged YOLOv12’s efficient architecture to generate
bounding boxes that served as precise prompts for
segmentation. These detections were then integrated into
SAM 2’s promptable segmentation framework, producing
accurate and detailed segmentation masks. This combined
approach delivered robust recognition and precise segmenta-
tion of LNPs and their internal structures, but also circum-

vented the need for extensive data sets typically required by
traditional transformed-based models. Consequently, the
pipeline demonstrated notable efficiency and practicality
gains for cryo-EM image analysis. Comparing to the
foundation models, LNP-MOD demonstrated higher accuracy
at identifying and segmenting both LNP morphologies and
their corresponding internal structures, as well as superior
performance in machine learning evaluations.
To cross-validate the experimental result from LNP-MOD,

numerical models were developed as an additional, biophysi-
cally grounded validation method, guided by our under-
standing and observations of various LNP morphologies. Two
distinct LNP classes were modeled to challenge the platform’s
accuracy. LNP-MOD’s analysis of the corresponding Lip-
osomal LNP cryo-EM images revealed diameter and cross-
sectional area measurements that were in line with the
predicted trends. For the Blebs with mRNA system, LNP-
MOD’s measurement again closely matched the proposed
geometrical model. We believe LNP-MOD can serve as a
foundational tool enabling scientists to accelerate research in
LNP morphology studies through an easily accessible cloud
system. Additionally, each module within LNP-MOD can be
utilized independently to facilitate the creation of customized
training data sets and is highly tunable for targeted analyses of
specific LNP types or internal structures. Lastly, we envision
broader use of LNP-MOD as this tool has the potential to
synergize with lipid chemistry AI-powered tools, extending into
a pipeline of virtual genetic medicine discovery.

METHODS
Data Set. A data set of 228 cryo-EM images containing LNPs was

curated from the Nanomedicines Research Group. All LNPs and
internal structures in the images were annotated with segmentation
masks and bounding boxes. The annotations were performed by
human annotators following the classification method as shown in
Figure 1. The annotations were then separately reviewed by 2 LNP
experts to correct the annotations and to minimize bias. In total,
13,295 annotations were made consisting of 2039 Blebs with mRNA,
2253 oil core, 59 Other LNP, 3165 Not Fully Visible LNP, 1408
Liposomal LNP, 167 Liposome, 2757 mRNA, and 1447 Oil Droplet.
Any LNPs that were partially covered, overlapping, or touching edges
were classified as Not Fully Visible LNP. The Other LNP category
included various new LNP structures yet to be explored, but not able
to be classified as a class due to the small sample size. The data set
was separated in an 80:20 ratio for model training and validation,
respectively.

Figure 5. Blebs with mRNA LNP numerical modeling. (A) End-to-end diameter of LNPs determined by LNP-MOD image analysis by
longest line method (green □’s) compared with numerical model (blue ●’s) at various mRNA + water cross-sectional areas. (B) 3D
illustration of FLuc-encapsulated Bleb LNP numerical model at cross-sectional area fraction of mRNA + water = 25%, showing oil droplet
(black), 4 copies FLuc mRNA + water aqueous compartment (blue), and monolayer and bilayer (brown translucent).
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Model Training. The weight of LNP-MOD’s object detection
model was initialized with the foundation YOLO-v12s model, and
trained for 200 epochs with the AdamW36 optimizer with a learning
rate of 0.01 and a weight decay of 0.0005. The training batch size was
2, which is the number of images the model trained with before
updating parameters. Data augmentations were implemented to
enrich the training data set to reduce overfitting and improve the
generalization capability on unseen data. Mosaic augmentation, where
4 images are combined into a single mosaic image, was set to be
always applied. Image translating, scaling, and horizontal flipping were
set to be applied with a probability of 10%, 50%, and 50%,
respectively.
For the Instance Segmentation Module, the model was initialized

with the foundation SAM 2.1 checkpoint. Training was conducted
with a batch size of 2 for 40 epochs using single-frame inputs and up
to 10 objects per frame, employing a multicomponent loss function
combing mask, Dice Similarity Coefficient (DSC), intersection over
union (IoU), classification components with different weights. Data
augmentation included random horizontal flipping, affine trans-
formation and color jittering.
Evaluation Metrics. Following common practice and the

recommendations in Metrics,37 Mean Average Precision (mAP) and
Dice Similarity Coefficient (DSC) were used to evaluate the
performance of LNP-MOD Object Detection and Segmentation.
Mean Average Precision (mAP) is a widely used metric to evaluate

the performance of object detection models. It combines precision
and recall across multiple classes at various intersection over union
(IoU) thresholds. A predicted bounding box is a true positive (TP) if
the IoU with the ground truth bounding box is equal or greater than
the threshold. Precision in this context refers to the ratio of correctly
predicted positives to the total predicted positives. Recall is the ratio
of true positives to all the actual positives. For each object category,
the area under the Precision−Recall curve, known as Average
Precision (AP), is defined as

=
=

R R PAP ( )
n
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n n n
1

1

1
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where Rn and Rn−1 are the recall values at threshold n and n − 1, Pn is
the precision at threshold n. The Mean Average Precision (mAP) is
then determined by averaging the AP values for all categories,
providing a comprehensive view of the model’s accuracy and
reliability, which is defined as
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where C is the total number of the classes and APc is the Average
Precision for class c.
Dice Similarity Coefficient (DSC) is a statistical measure used to

determine the similarity between 2 sets of data. It is commonly used
in image segmentation, particularly in medical imaging, to compare
the similarity between the predicted segmentation masks and the
ground truth masks, which is defined as

= | |
| | + | |

A B
A B

DSC
2
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where A is ground truth mask and B is prediction mask from fine-
tuned SAM. 2|A ∩ B| is the intersection area of A and B.
Numerical Modeling�Liposomal LNP. The Liposomal LNP

numerical model was developed to simulate the structural and
volumetric organization of these systems. The model is comprised of a
system of equations (eqs 4.1−4.16) and is solved using MATLAB’s
vpasolve symbolic solver.
To anchor the simulation, the system is first evaluated at a nor-

MC3 molar ratio of 0%, assuming a fixed outer radius r = 45 nm (eq
4.13) to match experimental observations. The total interior water
volume at this baseline, denoted Vw,0% nMC3, is stored as a reference.
Subsequently, the model solves nor-MC3 molar ratios from 10% to
70%.

The nor-MC3 molar ratio MRnMC3, the independent variable, is
defined as the number of nor-MC3 molecules divided by the total
number of molecules comprising the LNP (eq 4.1). In all
formulations, ESM and cholesterol are held at equimolar concen-
trations (eq 4.2).
Cholesterol is assumed to contribute minimally to the lipid

headgroup footprint due to its small polar hydroxyl group and its
tendency to insert between the acyl chains of neighboring
phospholipids. As such, its effective contribution to surface coverage
is limited compared to that of phospholipids like ESM. The effective
headgroup area, HAeff, is therefore estimated as the sum of the
headgroup areas, where HAESM = 0.5 nm2 and HAchol = 0.37 nm2 (eq
4.3).
The total volume of the LNP VLNP is composed of three concentric

compartments�inner, middle, and outer�represented as spherical
shells around a central nor-MC3 oil droplet (eqs 4.4−4.7):

1 Inner volume (Vin) includes:
Oil core volume Voil, modeled as a solid sphere with
radius roil (eq 4.8). This volume is derived from the
number of nor-MC3 molecules nnMC3, molecular weight
MWnMC3 = 614.06 g/mol, oil density ρnMC3 = 0.886 ×
10−21 g/nm3, and Avogadro’s number NA = 6.022 ×
1023 mol−1 (eq 4.9).
Monolayer volume Vml, a thin spherical shell around
the oil droplet of fixed monolayer thickness tml = 2.5 nm
(eq 4.10).
Adsorbed water volume on monolayer Vw,ml, which
assumes 10 water molecules (nw,a = 10) are associated
with each outward-facing monolayer lipid head. This is
calculated by dividing the monolayer’s surface area by
HAeff, and multiplying by the volume per water
molecule derived from MWw = 18.02 g/mol and ρw =
0.997 × 10−21 g/nm3 (eq 4.11). At 0% nor-MC3, all
components of Vin are zero.

2 Middle volume (Vmid) includes:
Encapsulated mRNA volume VmRNA, modeled as a
cylindrical nucleotide helix with diameter dmRNA = 2 nm,
nucleotide length lnt = 0.33 nm, number of bases for
NanoLuc nb = 808, and number of encapsulated copies
nmRNA = 4 per LNP (eq 4.12). At 0% nor-MC3, no
cationic lipid is present to complex mRNA, so VmRNA =
0.
Bulk water volume Vw, which decreases as nor-MC3 is
introduced. This depletion is modeled using an inverse
decaying sigmoidal function governed by a steepness
parameter k = 12%−1 and a midpoint transition molar
ratio MRx = 15% (eq 4.13), corresponding to the molar
ratio at the transition point between high and water
content (i.e., approximately when the water content
drops by half).

3 Outer volume (Vout) includes:
Bilayer volume (Vbl), a thin and spherical shell with of
fixed bilayer thickness tbl = 5 nm (eq 4.14).
Adsorbed water on bilayer Vw,bl, following the same
rationale as the monolayer case, but accounting for both
inward- and outward-facing bilayer leaflets (eq 4.15).

The total number of ESM and cholesterol molecules, nESM and nchol,
is calculated as the sum of surface areas of all relevant interfaces (oil
monolayer (if present), inner bilayer leaflet, and outer bilayer leaflet)
divided by HAeff (eq 4.16). At 0% nor-MC3, there is no monolayer, so
its surface area is excluded.
The outer cross-sectional area is defined geometrically as πr2, with

the radius r being a dependent variable solved from the system for
each value of MRnMC3.
Numerical Modeling−Bleb LNP. The Bleb LNP numerical

model describes an aqueous mRNA-containing compartment blebbed
out of a KC2-based oil droplet. The model solves for the aqueous and
oil radii, raq and roil, using a defined system of equations (eqs 5.1−
5.20).

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.5c09956
ACS Nano 2025, 19, 33387−33398

33395

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.5c09956?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The model begins by calculating the number of lipid molecules.
The number of KC2 molecules, nKC2, is determined from the number
of nucleotide bases per FLuc mRNA. It is equal to the number of
bases nb = 1921, multiplied by the number of encapsulated mRNA
copies per LNP nmRNA = 4 and the N/P ratio = 6N

P
(eq 5.1). The

number of DSPC and cholesterol molecules, nDSPC and nchol, are
calculated based on the relative molar ratios of the three lipid species:
MRDSPC = 10%, MRchol = 40%, MRKC2 = 50% (eqs 5.2 and 5.3).
Because DSPC and cholesterol are not equimolar in this system,

the monolayer and bilayer they form will differ in composition. To
account for this, the effective headgroup area, HAeff, is calculated as a
mole-fraction-weighted average of the individual lipid headgroup
areas, where HADSPC = 0.65 nm2 and HAchol = 0.37 nm2 (eq 5.4).
The oil compartment volume, VKC2, is calculated using the

number of KC2 molecules nKC2, molecular weight MWKC2 = 642.11
g/mol, oil density ρKC2 = 0.886 × 10−21 g/nm3, and Avogadro’s
number NA = 6.022 × 1023 mol−1 (eq 5.5).
The aqueous compartment volume, Vaq, is modeled as sphere of

radius raq, excluding the surrounding bilayer (eq 5.6). Its total volume
is the sum of the volume of encapsulated mRNA, the volume of water
adsorbed to the bilayer, and the interior water volume (eq 5.7).
The mRNA volume VmRNA is calculated just as before as a

cylindrical nucleotide helix with diameter dmRNA = 2 nm, nucleotide
length lnt = 0.33 nm, number of encapsulated copies nmRNA = 4 per
LNP, but with number of bases for FLuc nb = 1921 (eq 5.8).
The adsorbed water volume Vw,ml assumes 10 water molecules

adsorbed onto each inner leaflet lipid head of the bilayer (eq 5.9).
The remaining water volume Vw is solved indirectly through a

constraint on cross-sectional area.
The independent variable in the model is the mRNA and water

internal structure fraction fmRNA+water, defined as the ratio of the cross-
sectional area CSAmRNA+water to the cross-sectional area of the entire
LNP CSALNP (eq 5.10). The Bleb LNP is geometrically modeled as
two overlapping spheres of outer radii roil,o and raq, o, separated by a
center-to-center distance d. These outer radii account for the
monolayer (2.5 nm) and bilayer (5 nm) thicknesses, respectively
(eqs 5.11 and 5.12). To simplify the geometry, the separation distance
d is either set to roil if fmRNA+water < 50%, to raq if fmRNA+water > 50%, and
to the average of the two radii if fmRNA+water = 50% (eq 5.13).
The aqueous cross-sectional area CSAmRNA+water is calculated from

raq (eq 5.14), and the total LNP cross-sectional area CSALNP is
determined by summing the cross-sectional areas of both spheres and
subtracting the overlapping intersection region (eq 5.15). The cross-
sectional intersection area CSAintersection and the corresponding volume
intersection Vintersection are computed using derived geometric formulas
for overlapping spheres (eqs 5.16 and 5.17).38,39

Since the aqueous compartment is treated as being “blebbed out”
of the oil droplet, the oil radius roil is defined as the radius of a
hypothetical sphere containing both the oil volume occupied by KC2
and the intersection volume (eq 5.18).
The number of DSPC and cholesterol molecules can then be

summed together to find the outer surface area of the entire LNP
SALNP (eq 5.19), which is the outermost monolayer lipid surface
formed by DSPC and cholesterol encompassing both compartments.
Finally, the total end-to-end diameter of the LNP is simply the sum

of the monolayer thickness, the radius of the oil compartment, the
separation distance of the two spheres, the radius of the aqueous
compartment, and the bilayer thickness (eq 5.20).
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